Featured FREE Resource:

Chemical Engineering World

Sharing Chemical Engineer's Challenging, Exciting, Interesting and Stimulating Life...



WHAT I LEARN SO FAR...

Within this short period of time, i learned a lot of thing. I gained so many experiences in this industry. Everyday i'll learned something new. So far, i was exposed to plant processes, vacuum system operation, cooling towers, boiler operation, production arrangement/coordination, heat exchangers etc. Slowly i developed my knowledge and skill on this area. Later on, i will slowly and briefly tell you about my experience. However, i have my own target in my career. Everybody must have their own target. Every chemical engineer/process engineer or whatever engineer must have their own target. If not, until when you're going to be just an ordinary engineer. Indulge yourself in some profesional association. It doesn't matter if it is oversea or local. I am an associate member of IChemE, of UK. IChemE stands for Institution of Chemical Engineers.

But, to tell you the truth, although my original ambition is to become a chemical engineering lecturer, i still appreciate all my very precious experience as a project/chemical/process engineer. Not to mention also my research experience too.

posted by zaki yamani @ 9:30 PM, , links to this post

WHAT CHEMICAL ENGINEERS DO? (Adopted from pafco.com)

It is true that chemical engineers are comfortable with chemistry, but they do much more with this knowledge than just make chemicals. In fact, the term "chemical engineer" is not even intended to describe the type of work a chemical engineer performs. Instead it is meant to reveal what makes the field different from the other branches of engineering.


All engineers employ mathematics, physics, and the engineering art to overcome technical problems in a safe and economical fashion. Yet, it is the chemical engineer alone that draws upon the vast and powerful science of chemistry to solve a wide range of problems. The strong technical and social ties that bind chemistry and chemical engineering are unique in the fields of science and technology. This marriage between chemists and chemical engineers has been beneficial to both sides and has rightfully brought the envy of the other engineering fields.

The breadth of scientific and technical knowledge inherent in the profession has caused some to describe the chemical engineer as the "universal engineer." Yes, you are hearing me correctly; despite a title that suggests a profession composed of narrow specialists, chemical engineers are actually extremely versatile and able to handle a wide range of technical problems.

So What Exactly Does This "Universal Engineer" Do?

During the past Century, chemical engineers have made tremendous contributions to our standard of living. To celebrate these accomplishments, the American Institute of Chemical Engineers (AIChE) has compiled a list of the "10 Greatest Achievements of Chemical Engineering." These triumphs are summarized below:

The Atom, as Large as Life:
Biology, medicine, metallurgy, and power generation have all been revolutionized by our ability to split the atom and isolate isotopes. Chemical engineers played a prominent role in achieving both of these results. Early on facilities such as DuPont's Hanford Chemical Plant used these techniques to bring an abrupt conclusion to World War II with the production of the atomic bomb. Today these technologies have found uses in more peaceful applications. Medical doctors now use isotopes to monitor bodily functions; quickly identifying clogged arteries and veins. Similarly biologists gain invaluable insight into the basic mechanisms of life, and archaeologists can accurately date their historical findings.

The Plastic Age:
The 19th Century saw enormous advances in polymer chemistry. However, it required the insights of chemical engineers during the 20th Century to make mass produced polymers a viable economic reality. When a plastic called Bakelite was introduced in 1908 it sparked the dawn of the "Plastic Age" and quickly found uses in electric insulation, plugs & sockets, clock bases, iron cooking handles, and fashionable jewelry (see
OIL). Today plastic has become so common that we hardly notice it exists. Yet nearly all aspects of modern life are positively and profoundly impacted by plastic.

The Human Reactor:
Chemical engineers have long studied complex chemical processes by breaking them up into smaller "unit operations." Such operations might consist of heat exchangers, filters, chemical reactors and the like. Fortunately this concept has also been applied to the human body. The results of such analysis have helped improve clinical care, suggested improvements in diagnostic and therapeutic devices, and led to mechanical wonders such as artificial organs. Medical doctors and chemical engineers continue to work hand in hand to help us live longer fuller lives.

Wonder Drugs for the Masses:
Chemical engineers have been able to take small amounts of antibiotics developed by people such as Sir Arthur Fleming (who discovered penicillin in 1929) and increase their yields several thousand times through mutation and special brewing techniques. Today's low price, high volume, drugs owe their existence to the work of chemical engineers. This ability to bring once scarce materials to all members of society through industrial creativity is a defining characteristic of chemical engineering (see
Plastics above, Synthetic Fibers, Food, and Synthetic Rubber below).

Synthetic Fibers, a Sheep's Best Friend:
From blankets and clothes to beds and pillows, synthetic fibers keep us warm, comfortable, and provide a good night's rest. Synthetic fibers also help reduce the strain on natural sources of cotton and wool, and can be tailored to specific applications. For example; nylon stockings make legs look young and attractive while bullet proof vests keep people out of harm's way.

Liquefied Air, Yes it's Cool:
When air is cooled to very low temperatures (about 320 deg F below zero) it condenses into a liquid. Chemical engineers can then separate out the different components. The purified nitrogen can be used to recover petroleum, freeze food, produce semiconductors, or prevent unwanted reactions while oxygen is used to make steel, smelt copper, weld metals together, and support the lives of patients in hospitals.

The Environment, We All Have to Live Here:
Chemical engineers provide economical answers to clean up yesterday's waste and prevent tomorrow's pollution. Catalytic converters, reformulated gasoline, and smoke stack scrubbers all help keep the world clean. Additionally, chemical engineers help reduce the strain on natural materials through synthetic replacements, more efficient processing, and new recycling technologies.

Food, "It's What's For Dinner":
Plants need large amounts of nitrogen, potassium, and phosphorus to grow in abundance. Chemical fertilizers can help provide these nutrients to crops, which in turn provide us with a bountiful and balanced diet. Fertilizers are especially important in certain regions of Asia and Africa where food can sometimes be scarce (See
NITROGEN). Advances in biotechnology also offer the potential to further increase worldwide food production. Finally, chemical engineers are at the forefront of food processing where they help create better tasting and most nutritious foods.

Petrochemicals, "Black Gold, Texas Tea":
Chemical engineers have helped develop processes like catalytic cracking to break down the complex organic molecules found in crude oil into much simpler species. These building blocks are then separated and recombined to form many useful products including: gasoline, lubricating oils, plastics, synthetic rubber, and synthetic fibers. Petroleum processing is therefore recognized as an enabling technology, without which, much of modern life would cease to function (see
OIL).

Running on Synthetic Rubber:
Chemical engineers played a prominent role in developing today's synthetic rubber industry. During World War II, synthetic rubber capacity suddenly became of paramount importance. This was because modern society runs on rubber. Tires, gaskets, hoses, and conveyor belts (not to mention running shoes) are all made of rubber. Whether you drive, bike, roller-blade, or run; odds are you are running on rubber.

posted by zaki yamani @ 11:58 AM, , links to this post

My Post graduate degree - M.Eng (Chemical Engineering ) from UTM, Malaysia

I studied and conducted research in Reaction Engineering specializing in Catalysts technology. Here, i learned to synthesized catalyst for a one step process of natural gas conversion to gasoline. I enjoyed doing the research. It was fun writing the technical papers. It was interesting characterizing the catalysts after creating it from various chemicals. Our research group did won some recognition in and outside the country. My bos, now Prof. Dr. Nor Aishah Saidina Amin is a very dedicated and hard working lecturer/researcher/supervisor. Well, i learned from her. Together with Pak Didi (now already Pak Dr. Ir. Didi Dwing Anggoro), we explore our research further.

posted by zaki yamani @ 1:03 AM, , links to this post

Chemical Engineering Career

Welcome to my weblog. I just want to share some experience/knowledge that i collected so far as a chemical engineer/project engineer and currently as process engineer. But before that let me introduce myself...

My short name is Zaki. I obtained my Chemical Enginering degree from Bradford University, UK in 1999. Later i did some research in Reaction Engineering in the Faculty of Chemical and Natural Resources Engineering, University Teknologi Malaysia (UTM). After some time, I pursued my Masters Degree, studying Chemical Engineering by Research at UTM. My research title was Optimization of Oxidative Coupling of Methane using Design of Experiment. Well, It's a very challenging subject to do. However, i survived it...

After completing my masters degree, i joined a local oil and gas service company, doing various type of oil and gas activities. With this company, i travelled a lot, here and there, on-shore and offshore, local and over-seas. Well, i enjoyed this job....and the pay is good too!!! However, the good thing did not last long. I have to accept the fact that the management decision to move the company to KL is unavoidable. Having my family and my life in JB, it's impossible for me to leave JB. I had no choice. I have to search for some other job.

Then i when to this interview in a refinery in Pasir Gudang. I was accepted as a process engineer and my task is to take care of one of the largers refinery plant in Pasir Gudang + some other project jobs utility jobs as well. Here i learn a lot.

Having a chemical engineering degree, you can work in various interesting and chalenging field.
You can be working as a chemical engineer, process engineer, project engineer, chemical specialist, researcher, lecturer, consultant, oil & gas field etc. For me, i've been a research officer, work in the chalenging oil & gas field & presently working in an intense oil processing refinery. And i really proud of my task and responsibility

Well, those are basically and briefly my experience so far. InsyaAllah, if God will, i shall share my experience in this journey of a chemical/project/process engineer. Wich me luck...

posted by zaki yamani @ 12:01 AM, , links to this post

The Author

zyz

I’m Zaki. I used to be a project, process and chemical engineer. Few years ago I successfully became a Chartered Engineer (IChemE) and Professional Engineer (BEM). I'm now employed as a chemical engineering educator/researcher/consultant. Hope you like reading my blog. I welcome any feedback from you. My email: zaki.yz[alias]gmail.com. TQ!


Learn something about Chem Eng that is not inside your text book.
Enter your email add:
 Subscribe in a reader
follow us in feedly
Join Chem Eng Rocks FB

Get this powerful 80-page ebook on various alternative energy that can save our environment and save your money. On top of that, you'll get a FREE eCourse on alternative energy from me.

First Name:
Email address:

what
job title, keywords
where
city, state, zip